<u>CfE Higher Maths – December Assessment – Marking Scheme</u>

Q1	(a)	
	-1	6

$$b + 1 - a = 0$$

$$76 + 2a + b = 72$$

$$2a + b = -4$$

$$a - b = 1$$

$$3a = -3$$

$$\begin{array}{rcl}
a & = -1 \\
b & = -2
\end{array}$$

Solve the two equations correctly to get

$$a = -1$$
 $b = -2$

(Note: Can use Long Division)

(b)

$$6x^{3} + 7x^{2} + ax + b = 0$$

$$<=> (x+1)(6x^{2} + x - 2) = 0$$

$$<=> (x+1)(3x+2)(2x-1) = 0$$

 $<=> x = -1, 3x = -2, 2x - 1 = 0$

$$x = -1$$
 $x = \frac{-2}{3}$ $x = \frac{1}{2}$

Q2	$f(x) = \frac{2}{3}\sin(3x - 1)$ $f'(x) = \frac{2}{3}\cos(3x - 1) \times 3$ $f'(x) = 2\cos(3x - 1)$	Correctly apply the chain ruleCorrectly simplify	1
Q3	$g(x) = x(x-3)^{2}$ $= x(x^{2} - 6x + 9)$ $= x^{3} - 6x^{2} + 9x$ $g'(x) = 3x^{2} - 12x + 9$	• Finds $g'(x)$	1
	Stationary points when $g'(x) = 0$ $3x^2 - 12x + 9 = 0$ $3(x^2 - 4x + 3) = 0$ 3(x - 3)(x - 1) = 0	sets derivative to zero	1
	x = 3, $x = 1Stationary points at (3, 0) and (1, 4)$	 Solves for x Finds corresponding y-values 	1
Q4	$x^{2} - kx + 9 = 0$ Discriminant is $(b^{2} - 4ac)$	Arrange equation into quadratic format, set to zero.	1
	a = 1, $b = -k$, $c = 9b^2 - 4ac = k^2 - 36$	• Express discriminant in terms of $k (k^2 - 36)$	1
	No Real roots: $k^2 - 36 < 0$ (k+6)(k-6) < 0	• State that for solution $(k^2 - 36) < 0$	1
	-6 k	• Solve inequality correctly $-6 < k < 6$	1
	No Real roots when $-6 < k < 6$		

	T		1
Q5	$5cosx = 6cos2x + 4$ $= 12cos^2x - 6 + 4$	 Use the double angle angle formula correctly to expand 6cos2x 	1
	$ <=> 12\cos^2 x - 5\cos x - 2 = 0 $	• Form a quadratic equation, in \boldsymbol{x} (set to 0)	1
Q6	$(4\cos x + 1)(3\cos x - 2) = 0$	Factorise correctly	1
	$\begin{vmatrix} 4\cos x + 1 &= 0 \\ \cos x &= -\frac{1}{4} \end{vmatrix} \begin{vmatrix} 3\cos x - 2 &= 0 \\ \cos x &= \frac{2}{3} \end{vmatrix}$	• Identify two values for $cosx$	1
	$0 \le x \le \pi$ so answers From 1 st and 2 nd quadrants only	Note: if assumed $0 \le x \le 2\pi$ with 2 extra solutions, lose last mark	
	$x = 1.82 \begin{cases} x = 0.841 \end{cases}$	 Find the 1st and 2nd quadrant solutions in radians correctly. 	1
	(a) x 3	Sketch the reflected curve clearly showing	
		• The _ shape	1
		 The point (3,0) or 3, marked on the x-axis 	1
		 The correct-"ish" curvature – i.e. asymptotic – "ish" to the line x =2 (which does not need to be drawn) 	1

			, ,
Q7	$f(x) = \frac{x^3 - 2\sqrt{x}}{x}, x > 0$		
	$f(x) = \frac{x^3}{x} - \frac{2x^{\frac{1}{2}}}{x}$		
	$= x^2 - 2x^{-1/2}$	Rearrange expression into differentiable form	1
	$f'^{(x)} = 2x + x^{-3/2}$	 Differentiate 1st term correctly Differentiate 2nd term correctly 	2
	$=2x+\frac{1}{x^{3/2}}$	Rearrange to have positive indices	1
	Gradient of tangent		
	$f'\left(\frac{1}{9}\right) = 2\left(\frac{1}{9}\right) + \frac{1}{\left(\frac{1}{9}\right)^{3/2}}$		
	$=\frac{2}{9}+\left(\frac{9}{1}\right)^{3/2}$	Substitute 1/9 into equation correctly	1
	$= \frac{2}{9} + 3^3 = 27\frac{2}{9}$	• Evaluate $f'\left(\frac{1}{9}\right)$ correctly as an exact value	1
Q8	$p\cdot (q+r-p)$		
	$= p \cdot q + p \cdot r - p \cdot p$	Able to expand brackets as dot product sums	1
	= p q cos60 + p r cos60 - p p cos0	• know that dot product is evaluated using $ a b cos\theta$	1
		• know that angles between $(p \ and \ q)$ and $(p \ and \ r)$ are both 60° and angle between $(p \ and \ p)$ is 0°	1
	$= \left(3 \times 3 \times \frac{1}{2}\right) + \left(3 \times 3 \times \frac{1}{2}\right) - \left(3 \times 3 \times 1\right)$		
	$=\frac{9}{2}+\frac{9}{2}-9$		
	= 0	evaluate expression correctly	1